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A B S T R A C T  

The problem of execu t ing  a r b i t a r y  a t t i t u d e  maneuvers 
w i t h  CMGs i s  i n v e s t i g a t e d  i n  response  t o  t h e  p o s s i b i l i t y  t h a t  a 
S a t u r n  V (Dry) Workshop w i l l  r e q u i r e  such a c a p a b i l i t y .  The 
des ign  of a maneuver c o n t r o l  l a w  i s  formulated as a two-part  
problem: f i r s t ,  t o  determine t h e  maneuver c o n t r o l  t o r q u e ,  and 
second, t o  command t h e  CMG gimbal ang le  rates so as t o  produce 
t h a t  t o rque  ( i . e . ,  w i th  no cross c o u p l i n g ) .  

The c o n t r o l  t o rque  i s  s e l e c t e d  such t h a t  t h e  maneuver 

A s o l u t i o n  
i s  executed  i n  minimum t i m e ,  s u b j e c t  t o  c o n s t r a i n t s  on t h e  
s p i n  angu la r  momentum and torque  of t h e  CMG system. 
t o  t h i s  problem i s  p resen ted  i n  which t h e  angu la r  a c c e l e r a t i o n  
and angu la r  ra te  about  an  a r b i t r a r y  r o t a t i o n  vector are expressed  
as f u n c t i o n s  of t h e  r o t a t i o n  ang le .  From t h i s  s o l u t i o n ,  a 
p r a c t i c a l ,  subopt imal  method of maneuver can be developed f o r  
implementation on f u t u r e  f l i g h t  hardware. 

The CMG gimbal angle  ra tes  r e q u i r e d  t o  produce t h e  
maneuver c o n t r o l  t o rque  a r e  determined so as t o  m i n i m i z e  t h e i r  
dynamic range. 
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TECHNICAL MEMORANDUM 

INTRODUCTION 

A maneuver capability for large, earth-orbiting 
spacecraft probably will be required to acquire new attitudes 
for particular experiments and to periodically "dump" the 
angular momentum accumulated by a CMG system. In general, the 
problem is to execute an arbitrary maneuver in as short a time 
as possible, subject to the constraints imposed by the CMG 
system. 

The solution to this problem divides naturally into 
two parts, calculating of the required control torque and 
commanding the CMG gimbal angle rates to produce that torque. 
Practical solutions to both problems are presented in this 
memorandum. These solutions can form the basis for implementa- 
tion on future flight hardware. 

CONTROL TORQUE FOR MINIMUM-TIME MANEUVERS 

Rotation Axis and Rotation Angle 

Recall the so-called Euler rotation theorem; any 
finite rotation of a rigid body may be expressed as a rotation 
through some angle (rotation angle) about some fixed axis 
(rotation axis). 
following results. 

In mathematical terms this theorem yields the 

Let A be the transformation matrix that relates a 
vector (u) expressed in the coordinates ( X  Y Z ) that define 
4-I.- iiiitia: - L L . L . . d -  --a LL ---- 2 2 - - L - -  
L A I C  a L L i  Luut: aiiu ~ i i e  LuuLuiiiaLea (X2f2Z2) L I I ~ L  u t j ~ i ~ i e  

the final attitude; that is 

L L  -I -1- c z  .. - 
1 1 1  - 
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Then t h e  equa t ion  f o r  t h e  r o t a t i o n  ang le  0 i s  

. 

and t h e  elements  of t h e  r o t a t i o n  v e c t o r  - e a r e  given by 

a12-a21 
( 3 )  

- 
2 s o  I e3 - - a23'a32 - a31'a13 

2 s  0 1 e* - el - 2s0 

During t h e  maneuver e i s  f i x e d  r e l a t i v e  t o  i n e r t i a l  
c o o r d i n a t e s  and s p a c e c r a f t  cooFdina tes ,  b u t  t h e  r o t a t i o n  angle  
d e c r e a s e s  t o  zero.  W e  c a n  w r i t e  

-1 1 4 ( t )  = cos [T(tr A ( t )  - l)] 

where $(O) = 0 .  L e t t i n g  T be the t o t a l  maneuver t i m e ,  w e  have 
$ ( T I  = 0 and A ( T )  = U ,  t h e  i d e n t i t y  ma t r ix .  

I n  what follows it w i l l  be convenient  t o  use  an ang le  
A ,  where 

A ( t )  = o - $(t) 

so t h a t  A ( 0 )  = 0 and A(T)  = A 5 0 .  
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Minimum-Time Maneuvers 

W Having e and A ,  we wish to execute the maneuver in 
minimum time, subFect to the constraint that the angular 
momentum the CMG system can provide is not exceeded. Observe 
that the maneuver time is given by 

Thus, T will be minimized if at all times is maximized, subject 
to the angular momentum constraint of the CMG system. 

To determine the maximum A ,  assume for the moment that 
the total angular momentum of the spacecraft and CMGs remains 
unchanged during the maneuver; that is, the effect of external 
torques are neglected during the maneuver. We write therefore 

H ( 0 )  = H(t) + I 52 = H(t) + i I e - - - - - ( 5 )  

where H(0) and H(t) are the total CMG spin angular momenta at 
times and t respeFtively, I is the inertia matrix of the 
spacecraft, and Q(=Ae) is the angular velocity of the spacecraft. 
Note that H(0) an'd e-in (5) have a fixed orientation relative 
inertial coordinates, but - H(t) and I - e do not. 

For convenience, let us introduce the following notation: 

H =  - I 

where h and E are unit vectors. Using these definitions, we can 
rewrite (5) as 

H(t)h(t) = - A :  W w - + H ( O ) h ( O )  - (6) 
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By forming t h e  self dot  product on both  s i d e s  of  t h i s  equa t ion ,  
w e  g e t  

V 

where c y  = h ' ( 0 ) w .  - - 
Now ( 7 )  i s  a q u a d r a t i c  e q u a t i o n  i n  whose s o l u t i o n  

i s  e a s i l y  shown t o  be 

= [ H ( O ) c y  + (-H 2 (0)s 2 y + H 
- 

Since  w e  are seeking  t h e  maximum A ,  i t  i s  c lear  from ( 8 )  t h a t  
H ( t )  should  be made maximum and t h e  + s i g n  should be chosen. 
Furthermore,  t h e  maximum of H ( t )  f o r  a system of  N CMGs i s  Nh, 
where h i s  t h e  s p i n  angu la r  momentum p e r  CMG. Thus w e  have ,  
f i n a l l y ,  

= [ H ( O ) c y  + (-H 2 ( 0 ) s  * y + (Nh)2)1/2]/W f ( X )  ( 9 )  

I t  remains o n l y  t o  determine c y  as a f u n c t i o n  of A. 
This  can be done e a s i l y  wi th  t h e  a i d  of Fig.  1, from which w e  
ge t  
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FIGURE 1 - RELATIONSHIP BETWEEN e, II(O), AND w RELATIVE TO 
INERTIAL COORDINATES 

and hence 

where a 1  6,  and e a r e  cons t an t  a n g l e s  determined a t  t h e  s t a r t  
of t h e  maneuver from 

where 

The symbol Q, over  a v e c t o r  i n d i c a t e s  t h e  c r o s s  product  
ope ra t ion .  
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Certain properties of f(A) are evident. The extreme 
values of f(A) coincide with the extreme values of cy, which 
are c(a-B) and c(a+B). These extremes occur at A=e and A = e + T ;  

that is, when w - lies in the plane defined by - e and - h(0). 

If a or B is zero, s a s ~  equals zero, and f(A) is 
constant for all A. a is zero if the maneuver is about a 
principal axis of the spacecraft, for then e and w are colinear. 
B is zero if e and h(0) are colinear. Also; if H T O )  = 0, f(A) 
is constant for all-X and is equal to Nh/W. Finally, note that 

1 

- - 

< W < (I1 2 + I2 2 + where Imin is the minimum principal Imin - - 
axis moment of inertia. 

We have shown above that the minimum-time maneuver 
is achieved by employing = f ( A )  as given by (9). But, to 
achieve this A the angular momentum vector of the CMG system 
must be at its full magnitude. Thus,the tip of the CMG angular 
momentum vector would traverse a path on the surface of sphere 
of radius Nh. 

Such a maceuver is impossible to realize, for it 
would require that A jump between zero and the values given by 
f(A) at the beginning and at the end of the maneuver. That is, 

achieve. To obtain a practical scheme, a bound must be placed 
on 1; that is, 

would be infinite at those times, and this no CMG system could 

With such a limit, 
in the phase plane 

the trajectory of a minimum-time maneuver 
has a shape such as shown in Fig. 2. 

Bounds on the vaneuver time may be obtained readily. 
To do so,  let us define Am  and in as the maximum and minimum 
values of as determined from f (A) for A in the interval [ O , A ] .  

Then 

This is also true if is IT. But starting a maneuver 
with B = IT is undesirable. 
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where the upper bound is obtained by following the trajectory 
oabo' on Fig. 2 ,  and the lower bound by following the trajectory 
ocdo'. It would be advantageous to arrange matters such that 
e = A/2, for then im would occur at X = A/2, thereby lowering 
the maneuver time. 

Trajectories such as ofgo' in Fig. 2 can be attained 
provided L is sufficiently large for the parabolic arcs to reach 
the curve defined by = f(X). Maneuver trajectories like those 
shown in Fig. 3 would result for values of L that were nos 
large enough. Also, in order to traverse the trajectory X = f(X) 
it is necessary that 

\ A 

FIGURE 2 

.. 
A =  -L  
2 = L ( A -  

A 
LDECREASI NG L 

FIGURE 3 
(DECREASING VALUES OF L )  

PHASE PLANE TRAJECTORIES OF MINIMUM-TIME MANEUVERS 
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0 

The c o n t r o l  t o r q u e  5’ t h a t  w i l l  produce r o t a t i o n  o n l y  

about  e i s  determined by n o t i n g  t h a t  f o r  t h e  maneuver R = i e 
and L? = A e. W e  g e t  

- - .. - 
- - 

.. 92% T = - ( A I e + X e I e )  - - - -C 

02% .. 
= - W ( h  w + h e w) - - -  

E f f e c t  of E x t e r n a l  Torques 

I n  t h e  preceding  development t h e  e f f e c t  o f  e x t e r n a l  
t o r q u e s  w a s  neg lec t ed  du r ing  t h e  maneuver. The e f f e c t ,  a s  shown 

below, i s  t o  r e q u i r e  t h a t  ( N h 1 2  i n  ( 9 )  be r ep laced  by 

connotes  t h e  w o r s t  c a se  e f f e c t  of t h e  e x t e r n a l  where t h e  t ( sT)  

t o r q u e s  f o r  t s T  ( T  = maneuver t i m e ) .  

max 

To e s t a b l i s h  t h i s  r e s u l t  w r i t e  

- - -  ( I n  + H )  - dT - T -ext 

which when i n t e g r a t e d  y i e l d s  

H ( t ) h ( t )  - T d T  = - In + H ( 0 )  / - e x t  - - (17) 

The c o n t r o l  t o rque  is  d e f i n e d  h e r e  as i ( t ) ,  t h e  ra te  of 
change s p i n  angu la r  momentum of  t h e  CMG system, 
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This equation is iden-ical to (6) except for L e  term on the left 
involving the integral of the external torques. Thus the left 
side of (7) should be replaced by the square of the magnitude 
of the left side of (17). Then we can write 

J o  L 

max connotes the worst case experience during the t (LT) where the 

various maneuvers required of the spacecraft. 

Finally, the external torques can be taken into account 
in the calculation of the control torques; (16) becomes 

- 2% T = T  - (XIe - + X - e I - e) --c -ext 

Procedure for Executing Minimum-Time Maneuvers 

A practical scheme for executing arbitrary maneuvers 
in near minimum time can be implemented using the concepts 
developed in the preceding sections. The scheme is based on 
using A ,  i trajectories of the type oabo' in Fig. 2. A step 
by step procedure is as foiiows: 

1. Determine the transformation matrix A that defines the 
maneuver. 

2. Obtain the maneuver angle O ( = A )  from ( 2 )  and e from ( 3 ) .  - 
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3 .  

4 .  

5. 

6. 

7. 

Determine W, w, H ( O ) ,  and h(0) using the definitions 
in (6). 

- - 

Obtain a, 13, and 8 from ( 1 2 ) .  

Find the value of X in the interval [ O , r \ I  for which 
( A - e )  is maximum. This value of ( A - e )  will give the 
minimum value of cy from (11). 

With the minimum cy, determine An from (9), replacing 

If in > + ( A L ) ’ / ~ ,  L is  not sufficiently large to 
achieve hn and the X,i trajectory will be of the type 
oao’ in Fig. 3 .  For such a trajectory, 

( N h )  2 by the term given in the preceding section. 

A ’* 1 / 2  ; and for 0 < A 2 , X = L , = (2LX) - 

* < A < A , = -L , while fo r  3 - = (2L(A-A) )  1 / 2  . 

8. If in > +(ALI1I2 ,  L is sufficiently large to 
achieve fn and the A , i  trajectory will be of the type 
oabo’ in Fig. 2. For such a trajectory, 
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Here and i are determined as follows: 

I 

.. 
A = L  I 

i = +(2LA)  1 /2 .  , 

.. n h 

- *n < A < A - z  - A = O  , A = A n  2L 
, 

(In steps 7 and 8, X is calculated from A =@-$,  where 
(p is given by ( 4 ) . )  

9. Calculate the maneuver control torque from (19). 

Discussion 

During an actual mission, H(0) can be predicted into 
the future because the external torques acting on a spacecraft 
are reasonably well known. By using the maneuver control technique 
developed in the previous section, the maneuver time T for a 
particular maneuver can also be forecast. Hence, when execution Of 
the maneuver has been decided upon, the best time in the future 
to execute it can be determined. Or, if as in the LM-ATM mission, 
only preplanned maneuvers are to be executed every orbit, the 
variation in H prior to the maneuvers can be preselected (by 
proper initiaiization of CMG spin axes) such that at the beginning 
of a maneuver H ( 0 )  is best situated for the maneuver, that is, 
8 = A/2.  

- 

The value of L used should be determined, in simulation 
studies, such that constraints on gimbal angle rates are not 
violated for the various maneuvers to be executed. 

COMMANDED GIMBAL ANGLE RATES TO PRODUCE AN ARBITRARY CONTROL TORQUE 

The control torque 'I?+ of a CMG system is fi,' the total - 
rate of change of the system spin angular momentum. 
physical arrangement of CMGs on a spacecraft, the general 

For any 

~~ 

The time derivative here is relative to an observer in 
inertial coordinates. 
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expression for 5 is 

T = - A = h[Gi - t Fb - + - -  $ hT] -c 

where 

h = magnitude of spin angular momentum for each CMG 

G,F = 3 x N matrices of gimbal angles 
. .  
- c1,B = N x 1 column vectors of outer and inner gimbal angle 

- -  $ hT = 

rates respectively 

cross product of the spacecraft angular velocity 
and the per unit total spin angular momentum of the 
system (i.e., - H = h - hT). 

Any solution for k and b that satisfies ( 2 0 )  is all 
that is required to produce-% exactly, with no cross-coupling 
(i.e., no torques along directions other than 5 ) .  
solution for k and cannot be obtained.from ( 2 0 )  because there 
are 2N unknowzs in 5 equations.. The basic problem then is to 
introduce a constraint between c1 and B to reduce the number of 
unknowns in ( 2 0 )  from 2 N  to 3 s o  that-a solution is possible. 
A straightforward apprvach t? this problem is to introduce an 
objective function in c1 and 6 that we wish to minimize and treat 
( 2 0 )  as a set of contraint equations. The objective function we 
will choose is 

A direct 

which reflects our interest in minimizing the dynamic range of 
the gimbal angle rates. The scalar g is positive and is to be 
chosen by the system designer. 

~ 

N two-degree-of-freedom CMGs are assumed. 
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I 

This minimization problem can be solved by the method 
of Lagrange multipliers. Let X be a 3 x 1  vector of multipliers; 
then we can replace the problem of minimizing ( 2 1 )  subject to 
the constraint ( 2 0 )  with the probelm of minimizing 

Since ( 2 1 )  is a positive definite function, the necessary and 
sufficient condition for a minimum of ( 2 2 )  is that the partial 
derivatives with respect to the elements of & and,&? all be zero. 
That is, 

- - 

By substituting these equations into ( 2 0 ) ,  a solution for X is 
obtained as - 

-1 1 - A = -(G G' + gF F') xc - - -  2 hT) 

Hence, 

The scalar g is to be chosen by the system designer 
to equalize, if possible, the dynamic range of the inner and 
outer gimbal rates as observed in simulations of system response 
to worst case control situations. 
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The above s o l u t i o n  f o r  k and 

1 Q T  
h - c  - -  - -  

r e q u i r e s  t h a t  t h e  ma t r ix  
(G G '  + F F') be of rank 3. PhysTcal ly- this  means t h a t  f o r  an 

a r b i t r a r y  vector (- T - h ) t h e r e  i s  some A ,  b t h a t  s o l v e s  
( 2 0 ) .  But t h i s  requirement  would e x i s t  f o r  any procedure t h a t  
a t t e m p t s  t o  s o l v e  ( 2 0 ) .  Hence, t h e  s o l u t i o n  h a s  i n t roduced  no  
s p e c i a l  r e s t r i c t ions  on system performance. 

CONCLUSION 

A minimum-time maneuver i s  executed  by r o t a t i n g  t h e  
s p a c e c r a f t  about  t h e  f i x e d  a x i s  d e f i n e d  by E u l e r ' s  r o t a t i o n  
theorem. The a t t a i n a b l e  r o t a t i o n  ra te  about  t h i s  a x i s  i s  
c o n s t r a i n e d  by t h e  s p i n  angular  momentum of t h e  CMG system 
and by t h e  i n t e g r a l  of t h e  e x t e r n a l  t o rques  t h a t  a c t  d u r i n g  t h e  
maneuver. The r o t a t i o n a l  a c c e l e r a t i o n  i s  c o n s t r a i n e d  by t h e  
t o r q u e  t h e  CMGs can  provide.  A n a l y t i c a l l y ,  these c o n s t r a i n t s  
a r e  in t roduced  r e a d i l y  (see (18)  and (13) 1 .  P r a c t i c a l l y ,  simula- 
t i o n  s t u d i e s  are r e q u i r e d  t o  de te rmine  both t h e  maximum v a l u e  of 
t h e  i n t e g r a l  of t h e  e x t e r n a l  t o r q u e s  and t h e  bound on t h e  a n g u l a r  
a c c e l e r a t i o n  f o r  t h e  class of maneuvers t o  be conducted w i t h  
a g iven  CMG system. Once t h e s e  c o n s t r a i n t s  a r e  determined,  
t h e  procedure f o r  execut ing  an a r b i t r a r y  maneuver i n  n e a r  minimum 
t i m e  fo l lows  d i r e c t l y .  

Implementing t h e  c a l c u l a t i o n s  f o r  t h e  maneuver con t ro l  
t o r q u e  and f o r  t h e  gimbal angle  r a t e s  needed t o  produce t h a t  
t o r q u e  would r e q u i r e  an on-board d i g i t a l  computer. 

1 0  22- JK-ep 
1: kL@z 
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